Pitfalls in compressed sensing reconstruction and how to avoid them
نویسندگان
چکیده
Multidimensional NMR can provide unmatched spectral resolution, which is crucial when dealing with samples of biological macromolecules. The resolution, however, comes at the high price of long experimental time. Non-uniform sampling (NUS) of the evolution time domain allows to suppress this limitation by sampling only a small fraction of the data, but requires sophisticated algorithms to reconstruct omitted data points. A significant group of such algorithms known as compressed sensing (CS) is based on the assumption of sparsity of a reconstructed spectrum. Several papers on the application of CS in multidimensional NMR have been published in the last years, and the developed methods have been implemented in most spectral processing software. However, the publications rarely show the cases when NUS reconstruction does not work perfectly or explain how to solve the problem. On the other hand, every-day users of NUS develop their rules-of-thumb, which help to set up the processing in an optimal way, but often without a deeper insight. In this paper, we discuss several sources of problems faced in CS reconstructions: low sampling level, missassumption of spectral sparsity, wrong stopping criterion and attempts to extrapolate the signal too much. As an appendix, we provide MATLAB codes of several CS algorithms used in NMR. We hope that this work will explain the mechanism of NUS reconstructions and help readers to set up acquisition and processing parameters. Also, we believe that it might be helpful for algorithm developers.
منابع مشابه
Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملSparseRI: A Compressed Sensing Framework for Aperture Synthesis Imaging in Radio Astronomy
In radio interferometry, information about a small region of the sky is obtained in the form of samples in the Fourier transform domain of the desired image. Since this sampling is usually incomplete, the missing information has to be reconstructed using additional assumptions about the image. The emerging field of Compressed Sensing (CS) provides a promising new approach to this type of proble...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 68 شماره
صفحات -
تاریخ انتشار 2017